### Arey PPHN!!! How to manage?





### Mohit Sahni

#### **Consultant Neonatologist, Neonatal Cardiologist**

Director Division of Neonatology & Academics, Institute of Child Health

Nirmal Hospital Pvt. Ltd., Surat

### Scenario.....

#### Labour and Delivery:

- Term infant, NVD, Thin MSL
- Vigorous at birth
- > APGAR 8, 9
- At 1 hr nurse noted baby to be dusky, with rapid breathing

#### Vitals:

SpO<sub>2</sub> 55% in room air HR 146/min Faint murmur Mod retractions Temp 36.6 C CRT 5-6 sec MBP = 36 mmHg RR 60/min

SpO2 -Pre69% & Post 50% in  $FiO_2$  100%



### Scenario.....

#### Intervention:

Intubated [CMV 24/6, 50/m, Ti 0.35s]

FiO<sub>2</sub> 100%, SpO<sub>2</sub> 85 / 69%

Art Gas: 7.01/79/35/16/ -12



### What are the differential ?



Sepsis and Shock



Congenital heart disease



MAS with PPHN



All of the above



None of the above

### PPHN

Failure of normal postnatal adaptation with **persistent high PVR** (pulmonary vascular resistance) leading to --

Right ventricular failure and

➢ Pulmonary ↔ systemic channel shunting



### **Clinical assessment...**

- Baby have respiratory distress
- Difference of 10-15 % in Pre and Post ductal SpO2
- Hyperoxia test
- Hyperoxia Hyperventilation test
- Other predisposing factors
- Shock, poor perfusion

Clinical assessment <u>ALONE</u> does not allow accurate evaluation of the nature of the cardiovascular compromise



### 4Chamber colour doppler





### **Traditional teaching**

- Oxygen vasodilator, keep SpO2 99-100, PaO2 80 or above
- Hyperventilate to
  - Alkalotic pH
  - Co2 wash out
- Give Sodabicarb to achieve alkalosis
- Give Dopamine , Adrenalin to achieve suprasystemic Blood pressures

# Physiologic Approach

Treat the problem not the consequences

> Optimize lung recruitment

Effective pulmonary vasodilation

Achieve normal cardiac output and blood pressure

### Ventilation

- Appropriate setting to minimize lung damage
  - Different modes (HFOV, HFJV)
  - Try to avoid high MAP tend to change mode from conventional if
    - MAP 12 or more and FiO2 > 60% to maintain SPo2
    - OI are > 15
  - Measures to decrease PVR
  - Never hyperventilate

# **Oxygen & PPHN**

Pulmonary vasodilator

paO<sub>2</sub> target range? > 95% vs 90-85%

Merits of post-ductal SpO<sub>2</sub> monitoring?

# **Oxygen Paradox**



# **Oxygen Saturation Target**

Target <u>pre-ductal</u> SpO<sub>2</sub> [88-94%] and paO<sub>2</sub> [50-80 mmHg]

No evidence to support SpO<sub>2</sub> > 95% or paO2 > 80 mmHg

Cautious approach to pre-post ductal gradient (?? > 75% acceptable if lactate, pH, urinary output normal)

#### **Mean Airway Pressure & Blood flow**





Figure 1 Effects on individual LVO of changes from CV to HFO at T1, and from HFO to CV at T2.

Laubscher 1996 Arch Dis Child

Mirro 1987 J Pediatr

### **Right Heart Compromise**



### Left Heart Compromise



# Cardiotropic Drugs in PPHN?



#### **Physiologic Considerations:**

- Impaired RV contractility and  $\downarrow$  pulmonary blood flow
- Pressure loaded RV
- Compromised left heart preload and low cardiac output
- Hypercontractile LV

### Which Inotrope you start 1<sup>st</sup> in PPHN ?

Dopamine



Dobutamine



Milrinone



#### **Goal is maintenance of effective tissue perfusion**

- Target normal systolic and diastolic blood pressures
- Ensure adequate cardiac output state (urinary output, pH, lactate)

#### Dobutamine is preferable for neonates with <u>hypotension</u> and signs of a <u>low cardiac output</u> (RV or LV) state

### Cardiotropic agents:

**Inodilators** – *milrinone*, *dobutamine* 

**Vasopressors** – *dopamine, epinephrine, vasopressin* 

# Case : ..... Baby S

• Term 38+4 wks B W 3.11KG Baby Girl

#### Maternal H/O:

- 33 yrs G4P1A2
- Not received steroids
- No HT/DM/PROM
- Antenatal UGS and Dopplers normal

#### L&D:

- By emergency LSCS (Fetal distress)
- Cry delayed (Born at peripheral centre)
- APGARS NK
- Liquor Meconium stained

# Case : ..... Baby S

#### **Resuscitation:**

- HR 20 /min
- No respiratory efforts
- Intubated with ET no 3.5 suction through ET done
- No meconium sucked through ET
- CPR done
- Adrenalin with 0.1ml /kg 1:10,000 given 1<sup>st</sup> dose through ET
- Did not respond so UVC was put in
- CPR continued for 5 mins
- 2 more doses of Adrenalin was given through UVC and the 3<sup>rd</sup> dose was 0.2 ml/kg 1:10,000
- With the 3<sup>rd</sup> dose NS bolus of 10ml/kg stat and 1ml/kg of NaHCO3 was given through UVC

# Case : ..... Baby S

- Transport Team retrieved her
- On bag and tube and transport ventilator
- Team reached at 20 mins of life and baby had one cardiac arrest
- CPR and Adrenalin 4<sup>th</sup> dose given with 0.3ml/kg and revived
- Vitals:
  - HR: 110/min

RR: bag and tube

- SPO2: Rt. Arm 56% on 100% O2
- Pulses poor in all 4 limbs
- CRT 5 secs
- No activity
- NBP not done
- 1<sup>st</sup> gasp at 25 mins of life

## **NICU** course

- When reached unit
- Conventional ventilator
- Settings:
  - AC mode
  - PIP started 20 and increased to 28
  - PEEP started 6 increased to 8
  - Ti 0.36secs RR-40 /min
  - End up with PIP/PEEP- 28/8 ------MAP 13
  - FiO2 100%
- Vitals:
  - HR 130/min
  - RR 40 (20 self breaths)
  - NBP 30/18 (22)
  - SPO2 : Rt hand 78% and Rt. Leg 56%
  - Temp: 36.4 degree

### **NICU** course

#### • When examined:

- Poor tone
- AF at level
- Pupils mid dilated sluggish to react
- Pulses weak in all the 4 limbs
- S1S2 heard , no murmur and S2 loud
- Abdomen was distended with Liver 5-6 cm below right costal margin
- Chest was clear no added sounds

#### • Investigations:

 ABG (40 mins)- pH- 6.66, PaCO2- 41.4, PaO2- 75.5, HCO3- 4.5, BE(-31.4)

Severe Metabolic acidosis

# **NICU** course

- Investigations:
  - Lactate 145 ( $\uparrow\uparrow$ )
  - CBC: Hb- 12.6, WBC-41,400, Plt- 1.09 lac
  - Serum calcium total7.8
  - -CXR
  - Ab US- Hepatomegaly with mild Ascites
  - HUS -- normal



# NICU course...Baby S

- She was shifted to HFOV (Sensor medics 3100 A)
- Settings of Ti 33%, MAP 14, Amplitude 30, FiO2 100%
- 1 hr after :
  - ABG: pH- 7.072, PaCO2- 32.7, PaO2- 29.9, HCO3 4.5, BE(-19.3)
  - Metabolic acidosis with CO2 wash out
- OI- 34.4
- Lactate 121(个)
- Q: What Next, you have everything in the world?
  Nitirc Oxide (iNO)

•iNO started at the dose of 20ppm and then weaned off in the next 17 hrs as per the unit protocol

•CXR – shows better opened lung fields and cardiac size reduced

•ABG: 3hrs post iNO: pH-7.284, PaCO2- 29.3, PaO2- 99.6, HCO3- 13.6, BE(-11.8)

- •Lactate: 57
- •MAP 9

•OI- 3.6

Q: What parameters you will change on HFOV?

•Decrease Amplitude

•Decrease FiO2

•Wean MAP

#### One at a time please



| Intervention<br>Time(hrs) | 40 mins<br>CMV | 6 hrs<br>CMV | 6.5 hrs<br>HFOV &<br>iNO | 9 hrs<br>iNO&<br>HFOV | 30 hrs<br>CMV | 42 hrs<br>Extubated | 42 hrs<br>CPAP |
|---------------------------|----------------|--------------|--------------------------|-----------------------|---------------|---------------------|----------------|
| рН                        | 6.66           | 7.072        |                          | 7.284                 | 7.299         |                     | 7.278          |
| PaCO2                     | 41.4           | 32.7         |                          | 29.3                  | 26.8          |                     | 35.7           |
| PaO2                      | 75.5           | 29.9         |                          | 99.6                  | 98.1          |                     | 83.5           |
| HCO3                      | 4.5            | 9.4          |                          | 13.6                  | 12.9          |                     | 16.3           |
| BE                        | -31.4          | -19.3        |                          | -11.8                 | -12.1         |                     | -9.5           |
| Lactate                   | 145            | 121          |                          | 57                    |               |                     |                |
| MAP                       | 10             | 10.3         | 14                       | 9                     | 8             |                     |                |
| OI                        | 13.2           | 34.4         |                          | 3.6                   | 3             |                     |                |

### Treatment

### Gold standard treatment– iNO

# Adjunctive Pulmonary vasodilation therapy –

Milrinone, Sildinafil, Vasopressin etc.





Selective pulmonary vasodilation

#### Bronchodilator activity

Surfactant stimulation

### iNO and Death/ECMO

#### Review: Nitric oxide for respiratory failure in infants born at or near term

Comparison: 01 Inhaled iNO versus control

Outcome: 01 Death or requirement for ECMO

| Study                                                                              | iNO<br>n/N                                        | Control<br>n/N | Relative Risk (Fixed)<br>95% Cl | Weight<br>(%) | Relative Risk (Fixed)<br>95% CI |
|------------------------------------------------------------------------------------|---------------------------------------------------|----------------|---------------------------------|---------------|---------------------------------|
| 01 Death or requirement f<br>allow backup use of iNO                               | for ECMO; studies wt<br>in controls               | nich did not   |                                 |               |                                 |
| Christou 2000                                                                      | 5/21                                              | 11/20          | •                               | 5.3           | 0.43 [0.18, 1.02]               |
| Clark 2000                                                                         | 38/113                                            | 63/104         |                                 | 30.6          | 0.56 [0.41, 0.75]               |
| Davidson 1997                                                                      | 33/114                                            | 16/41          |                                 | 11.0          | 0.74 [ 0.46, 1.20 ]             |
| Ninos 1996                                                                         | 52/114                                            | 76/119         |                                 | 34.7          | 0.71 [0.56, 0.91]               |
| Roberts 1996                                                                       | 12/30                                             | 20/28          |                                 | 9.6           | 0.56 [ 0.34, 0.92 ]             |
| Wessel 1996                                                                        | 9 /26                                             | 8/23           |                                 | 4.0           | 1.00 [ 0.46, 2.15 ]             |
| Subtotal (95 % CI)<br>Test for heterogeneity chi-s<br>Test for overall effect=-5.3 | 149 /418<br>square=4,31 df=5 p=0.6<br>5 p<0.00001 | 194/335<br>061 | •                               | 95.1          | 0.65 [0.55, 0.76]               |
| 02 Death or requirement f<br>backup use of iNO in con                              | for ECMO; studies wh<br>ntrols                    | nich allowed   |                                 |               |                                 |
| Barefield 1996                                                                     | 679                                               | 6/8            |                                 | 3.0           | 0.89 [0.48, 1.64]               |
| Mercier 1998                                                                       | 5 / 55                                            | 4/52           |                                 | 1.9           | 1.18 [ 0.34, 4.16 ]             |
| Subtotal (95% CI)<br>Test for heterogeneity chi-s<br>Test for overall effect=0.01  | 11764<br>square=0.22 df=1 p=0.6<br>1 p=1.0        | 10760<br>3414  |                                 | 4.9           | 1.00 [0.53, 1.90]               |
| Total (95% CI)<br>Test for heterogeneity chi-s                                     | 160 / 482<br>square=6.05 df=7 p=0.5               | 204/395<br>343 | *                               | 100.0         | 0.66 [0.57, 0.78]               |
| Test for overall effect=-5.1                                                       | 9 p<0.00001                                       |                |                                 |               |                                 |
|                                                                                    |                                                   | .i             | .2 1 5                          | 10            |                                 |
|                                                                                    |                                                   |                | Favors iNO Favors control       |               |                                 |

Barrington, & Finer 2008

| Author                       | Population                            | Dose                | Time         | Intermed.<br>outcomes                                | CLD               | CNS                     |
|------------------------------|---------------------------------------|---------------------|--------------|------------------------------------------------------|-------------------|-------------------------|
| Kinsella<br>1999<br>(n=80)   | <34 wks<br>a : A < 0.22               | 5 ppm               | D 0-7        | ↑ a:A ratio                                          | $\leftrightarrow$ | $\leftrightarrow$       |
| Schrieber<br>2003<br>(n=207) | <34 wks<br>< 3 d                      | 10 ppm<br>5 ppm     | D 1<br>D 1-7 | N/A                                                  | $\downarrow$      | ↓ severe<br>IVH/PVL     |
| Van Meurs<br>2005<br>(n=420) | < 34 wks<br>OI > 10                   | 5-10 ppm            | D 0-3        | N/A                                                  | ↔<br>>1kg:↓       | ↔<br>< 1kg:↑            |
| Hascoet<br>2005<br>(n=415)   | <34 wks<br>a : A < 0.22               | 5 ppm               | clin         | a:A response<br>45%                                  | $\leftrightarrow$ | $\leftrightarrow$       |
| Mestan 2005                  | <34 wks<br>< 3 d                      | 10 ppm<br>5 ppm     | D 1<br>D 1-7 | N/A                                                  | $\downarrow$      | ↓ delay &<br>disability |
| Ballard<br>2006<br>(n=582)   | < 32 wks<br>< 1250 g                  | 20 ppm→<br>10, 5, 2 | D7-21        | $\downarrow$ O <sub>2</sub> duration<br>Early disch. | $\downarrow$      | $\leftrightarrow$       |
| Kinsella<br>2006<br>(n= 793) | < 34 wks<br>< 48 hrs old<br>500-1250g | 5ppm                | D1-21        | N/A                                                  | $\leftrightarrow$ | ↓<br>750-999g           |

### Need for Adjunctive therapy

30-40% patients iNO <u>non-responders</u>

NINOS 1997 NEJM

- Escalating <u>costs</u> of iNO treatment
- Short (peroxynitrate generation) & long-term (altered DNA structure) <u>side effects</u> of iNO treatment
- Role in Preterms

### **Other Pulmonary Vasodilators**



### **Other Pulmonary Vasodilators**

#### Pulmonary Hypertension and Right Ventricular Dysfunction in Growth-Restricted, Extremely Low Birth Weight Neonates

Olivier Danhaive, MD Renée Margossian, MD Tal Geva, MD Stella Kourembanas, MD hypotensive episode. The echocardiograms, performed during the acute episode as part of the work-up, showed severe pulmonary hypertension and right ventricle (RV) dysfunction. The goals of this report are to describe the clinical and hemodynamic features of these patients. and to discuss the pathophysiology and the

### Neonatal Persistent Pulmonary Hypertension Treated with Milrinone: Four Case Reports

Dirk Bassler<sup>a</sup> Karen Choong<sup>a</sup> Patrick McNamara<sup>c</sup> Haresh Kirpalani<sup>a, b</sup>

<sup>a</sup>Division of Neonatology, Department of Paediatrics, and <sup>b</sup>Department of Clinical Epidemiology, McMaster University Medical Centre, Hamilton, Ont.; <sup>c</sup>Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ont., Canada

### **Milrinone - Oxygenation**

**Oxygenation index** 

inhaled Nitric Oxide



- $\downarrow$  FiO<sub>2</sub>, MAP and  $\uparrow$  pO<sub>2</sub>
- $\downarrow$  base deficit &  $\downarrow$  lactate

Sahni M et al, PAS 2010.

# Take Home



- PPHN is about <u>elevated PVR</u> and <u>impaired myocardial</u> <u>performance</u>
- Consider impact of oxygen and mechanical ventilation keep SPo2 88- 95% avoid hyperoxia
- Consider tolerating postductal SpO<sub>2</sub> > 75%
- Avoid hyperventilation , CO2 wash out for creating Alkalosis

# Take Home



- Avoid Sodabicarb therapy
- iNO is an effective pulmonary vasodilator but issues related to toxicity, lack of response , lack of free availability
- Evidence for <u>Adjunctive therapy</u> (milrinone / sildenafil) promising
- Consider <u>cardiotropic</u> support to optimize cardiac output (but not to induce systemic hypertension or raise postductal SpO<sub>2</sub>)
- Avoid vasoconstricting agents that increased pulmonary vascular resistance

